skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guo, Hanqi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. Data compression is a powerful solution for addressing big data challenges in database and data management. In scientific data compression for vector fields, preserving topological information is essential for accurate analysis and visualization. The topological skeleton, a fundamental component of vector field topology, consists of critical points and their connectivity, known as separatrices. While previous work has focused on preserving critical points in error-controlled lossy compression, little attention has been given to preserving separatrices, which are equally important. In this work, we introduce TspSZ, an efficient error-bounded lossy compression framework designed to preserve both critical points and separatrices. Our key contributions are threefold: First, we propose TspSZ, a topological-skeleton-preserving lossy compression framework that integrates two algorithms. This allows existing critical-point-preserving compressors to also retain separatrices, significantly enhancing their ability to preserve topological structures. Second, we optimize TspSZ for efficiency through tailored improvements and parallelization. Specifically, we introduce a new error control mechanism to achieve high compression ratios and implement a shared-memory parallelization strategy to boost compression throughput. Third, we evaluate TspSZ against state-of-the-art lossy and lossless compressors using four real-world scientific datasets. Experimental results show that TspSZ achieves compression ratios of up to 7.7 times while effectively preserving the topological skeleton. This ensures efficient storage and transmission of scientific data without compromising topological integrity. 
    more » « less
    Free, publicly-accessible full text available May 19, 2026
  3. Free, publicly-accessible full text available May 19, 2026
  4. Free, publicly-accessible full text available June 3, 2026
  5. Free, publicly-accessible full text available June 3, 2026
  6. Free, publicly-accessible full text available January 1, 2026
  7. Free, publicly-accessible full text available January 1, 2026
  8. Many scientific applications opt for particles instead of meshes as their basic primitives to model complex systems composed of billions of discrete entities. Such applications span a diverse array of scientific domains, including molecular dynamics, cosmology, computational fluid dynamics, and geology. The scale of the particles in those scientific applications increases substantially thanks to the ever-increasing computational power in high-performance computing (HPC) platforms. However, the actual gains from such increases are often undercut by obstacles in data management systems related to data storage, transfer, and processing. Lossy compression has been widely recognized as a promising solution to enhance scientific data management systems regarding such challenges, although most existing compression solutions are tailored for Cartesian grids and thus have sub-optimal results on discrete particle data. In this paper, we introduce LCP, an innovative lossy compressor designed for particle datasets, offering superior compression quality and higher speed than existing compression solutions. Specifically, our contribution is threefold. (1) We propose LCP-S, an error-bound aware block-wise spatial compressor to efficiently reduce particle data size while satisfying the pre-defined error criteria. This approach is universally applicable to particle data across various domains, eliminating the need for reliance on specific application domain characteristics. (2) We develop LCP, a hybrid compression solution for multi-frame particle data, featuring dynamic method selection and parameter optimization. It aims to maximize compression effectiveness while preserving data quality as much as possible by utilizing both spatial and temporal domains. (3) We evaluate our solution alongside eight state-of-the-art alternatives on eight real-world particle datasets from seven distinct domains. The results demonstrate that our solution achieves up to 104% improvement in compression ratios and up to 593% increase in speed compared to the second-best option, under the same error criteria. 
    more » « less
    Free, publicly-accessible full text available February 10, 2026
  9. This research explores a novel paradigm for preserving topological segmentations in existing error-bounded lossy compressors. Today's lossy compressors rarely consider preserving topologies such as Morse-Smale complexes, and the discrepancies in topology between original and decompressed datasets could potentially result in erroneous interpretations or even incorrect scientific conclusions. In this paper, we focus on preserving Morse-Smale segmentations in 2D/3D piecewise linear scalar fields, targeting the precise reconstruction of minimum/maximum labels induced by the integral line of each vertex. The key is to derive a series of edits during compression time; the edits are applied to the decompressed data, leading to an accurate reconstruction of segmentations while keeping the error within the prescribed error bound. To this end, we developed a workflow to fix extrema and integral lines alternatively until convergence within finite iterations; we accelerate each workflow component with shared-memory/GPU parallelism to make the performance practical for coupling with compressors. We demonstrate use cases with fluid dynamics, ocean, and cosmology application datasets with a significant acceleration with an NVIDIA A100 GPU. 
    more » « less